# Option MAFQ

Apprentissage statistique

laurent.carraro@telecom-st-etienne.fr
www.telecom-st-etienne.fr/Carraro



# Rappel introduction

#### > Vocabulaire

→ apprentissage :

méthode permettant à un automate d'évoluer selon un processus dit d'apprentissage (à partir d'essais/exemples)

- \* exemples :
  - apprentissage du petit enfant
  - reconnaissance de caractères
  - mise en évidence de facteurs de risques en santé
  - **►** taxonomie
  - prévision de risques (assurances, finance, industrie...)



# Types d'apprentissage

- > Inputs et outputs :
  - → chaque exemple est décrit par :
    - un input : conditions de l'essai
    - un output : résultat (pas toujours connu, cf. taxonomie)
- > Apprentissage supervisé :
  - un expert peut classer les exemples
     pour chaque exemple sont disponibles input et output
- > Apprentissage non supervisé :
  - → aucun expert n'est disponible, même pas un proxy
- Classification et régression



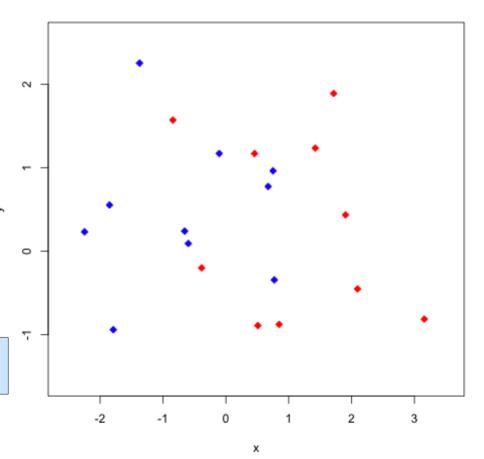
# De la régression linéaire aux k-NN

### Un exemple simulé en 2D

#### **→** Double simulation :

• simulation de 10 points selon la loi  $N(m_1,\Sigma)$ , puis la loi  $N(m_2,\Sigma)$ vecteurs  $M_1$  et  $M_2$  de taille 10, formés de points du plan.

M<sub>1</sub> en rouge, M<sub>2</sub> en bleu

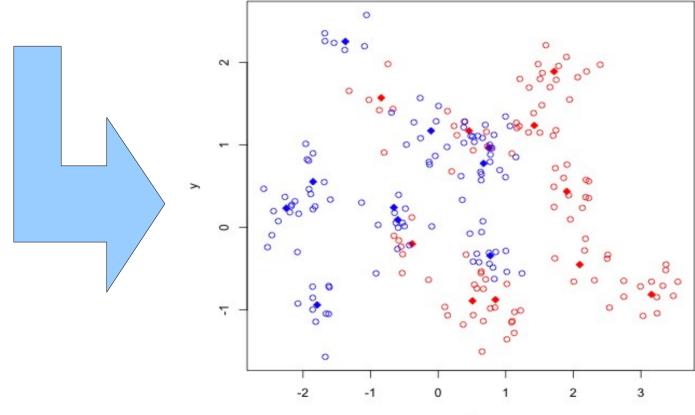


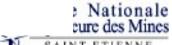
# Exemple simulé

#### + deuxième simulation:

on simule un échantillon de taille 100, mélange des lois normales  $N(M_{1,i}, \Sigma')$  où i=1,...,10

idem avec M<sub>2</sub>





# Comment séparer « au mieux » le nuage ?

- > Illusoire de séparer parfaitement
- > Formalisation :

Input : vecteur X de composantes X<sub>i</sub>

Output : variable Y ou groupe G

Ensemble d'apprentissage (X, G)

Learner : variable  $\widehat{Y}(X)$  ou groupe  $\widehat{G}(X)$ 

à chaque tirage(X,G) est de loi $\frac{1}{7}$   $\mu_1 \otimes \delta_1 + \frac{1}{2}\mu_2 \otimes \delta_1$ 



Mesurer l'écart entre les v.a. G et  $\widehat{G}(X)$ 



## Fonction de coût

Soit L une fonction de coût :

$$→$$
 L:  $\{0,1\}^2$  [0,+ [ NB: 1=rouge=population 1, 0=bleu=population 2

On suppose L(1,1)=L(0,0)=0 et L(1,0)=L(0,1)=
$$\alpha > 0$$
  
EPL( $\widehat{G}$ ) = E[L(G, $\widehat{G}$ (X))] Expected Prediction Loss

Minimisation de EPL:

$$\widehat{G}(X) = \begin{cases} 1 \text{ si } P(G=1/X=x) > P(G=0/X=x) \\ 0 \text{ si } P(G=1/X=x) < P(G=0/X=x) \\ ? \text{ si } P(G=1/X=x) = P(G=0/X=x) \end{cases}$$

 $\widehat{G} = \widehat{G}_B$  est le classifieur de Bayes EPL $(\widehat{G}_B)$  est le risque de Bayes ou risque optimal



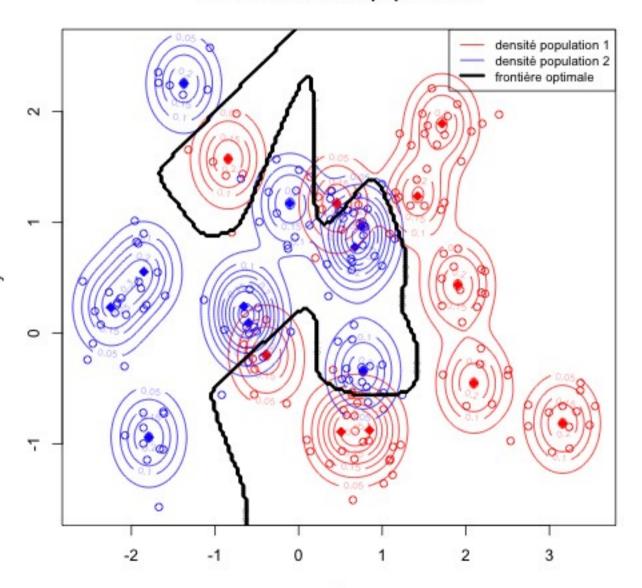
# Densités des points simulés

➤ Graphique RGL

Contours et frontière optimal

86,5% de points bien classés

#### densités des deux populations



# Séparation optimale à partir des échantillons ?

- ➤ Si les densités sont connues : estimation de densité ?
- > Régression linéaire :

$$\widehat{\mathbf{Y}}(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \hat{\beta}_2 \mathbf{x}_2$$

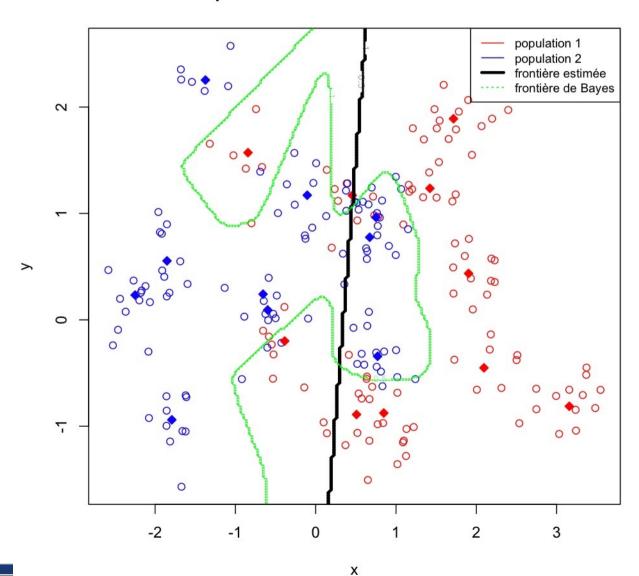
Coefficients estimés à partir de X et G

$$\widehat{G}(X) = \begin{cases} 1 & \operatorname{si}\widehat{Y}(x) > \cdot . \circ \\ 0 & \operatorname{si}\widehat{Y}(x) < \cdot . \circ \\ ? & \operatorname{si}\widehat{Y}(x) = \cdot . \circ \end{cases}$$

# Modèle linéaire de degré 1

#### séparation linéaire des deux classes

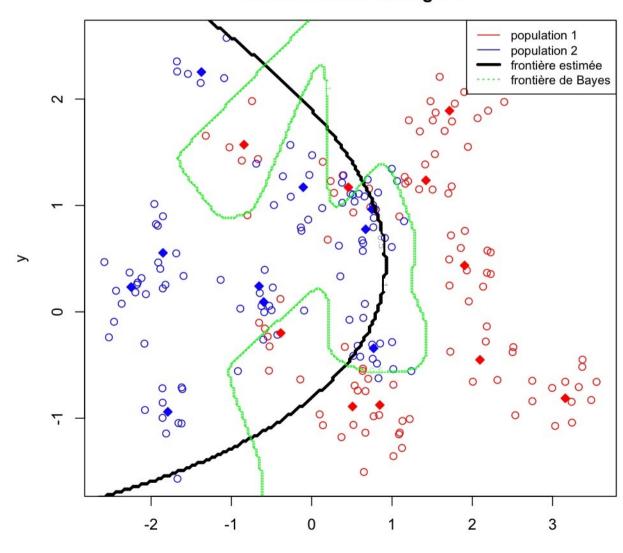
frontière linéaire
73,5% de points bien classés



# Modèle linéaire de degré 2

frontière = conique 79,5 % de bien classés

### séparation des deux classes modèle linéaire de degré 2

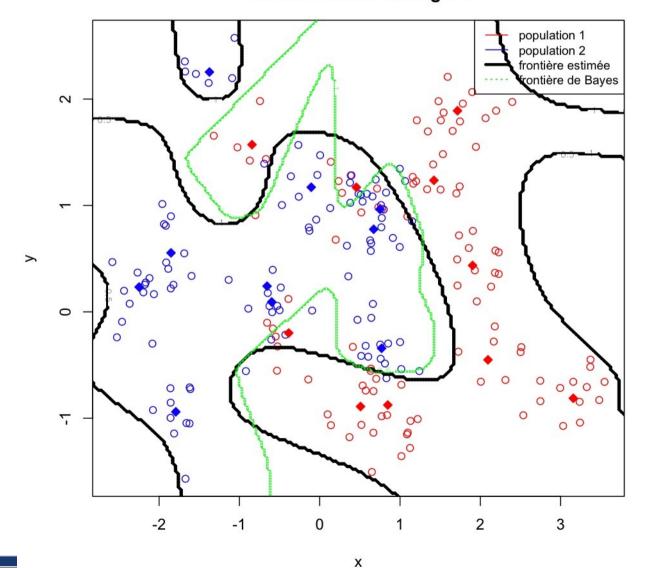


X

# Modèle linéaire de degré 5

#### séparation des deux classes modèle linéaire de degré 5

88% de bien classés



### Méthodes kNN

### kNN = k-th Nearest Neighbor

 $Soitx \in \mathbb{R}^2$ 

 $N_k(x)$  est l'ensemble des  $k x_i$  de X les plus proches de x

$$\widehat{\mathbf{Y}}(\mathbf{x}) = \frac{1}{\mathbf{k}} \sum_{\mathbf{x}_i \in \mathbf{N}_k(\mathbf{x})} \mathbf{g}_i$$

$$\widehat{G}(X) = \begin{cases} & \operatorname{si}\widehat{Y}(x) > 0.5 \\ & \cdot & \operatorname{si}\widehat{Y}(x) < 0.5 \\ & \cdot & \operatorname{si}\widehat{Y}(x) = 0.5 \end{cases}$$

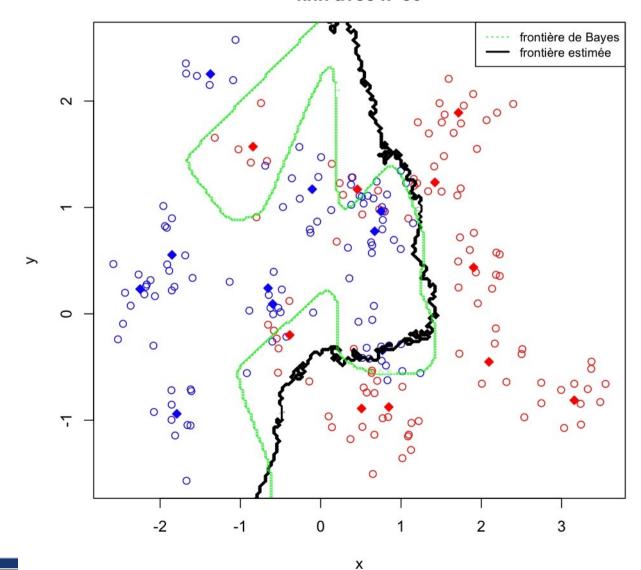
Il s'agit ici d'une méthode de vote.



# Modèle kNN pour k=30

84% de bien classés

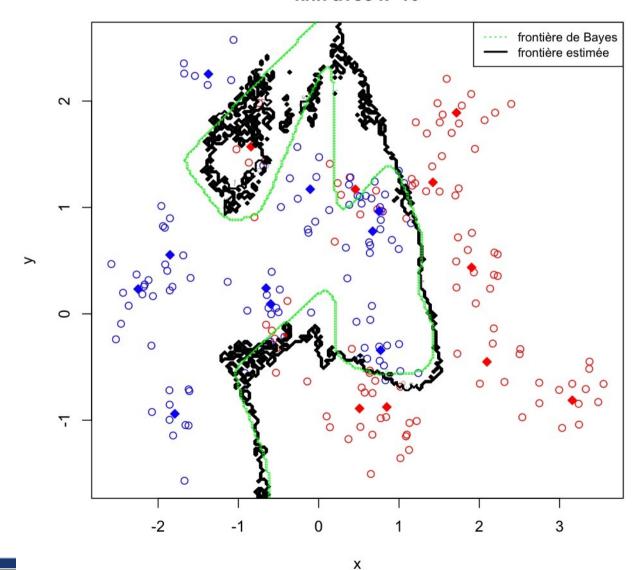
#### séparation des deux classes knn avec k=30



# Modèle kNN pour k=10

88 % de bien classés

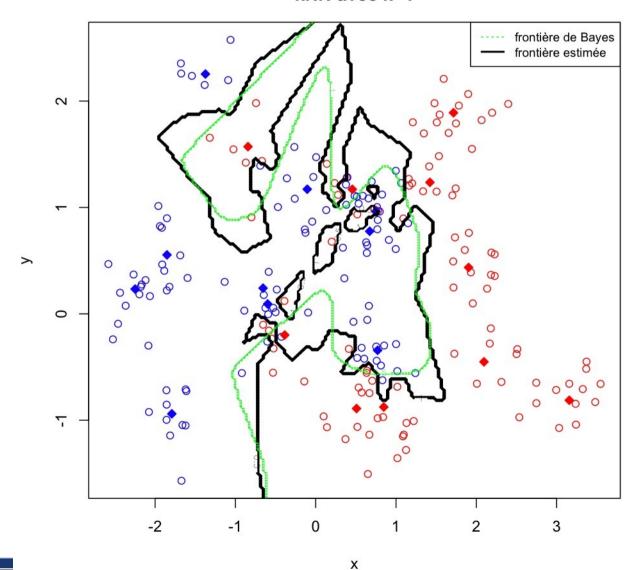
#### séparation des deux classes knn avec k=10



# Modèle kNN pour k=1

#### 100% de bien classés

#### séparation des deux classes kNN avec k=1



# Conclusion temporaire

- La méthode kNN s'approche davantage de la méthode optimale que la régression
- > Paramètre à bien ajuster :
  - ★ k pour kNN
  - → degré du polynôme pour la régression
- > 100% de bien classés n'est pas un bon objectif : voir validation



# Ecart quadratique

Supposons Y(x) déterministe ; soit x un nouveau point :

$$EQ(x) = \mathbf{E} [|\widehat{\mathbf{Y}}(\mathbf{x}) - \mathbf{Y}(\mathbf{x})|^{2}]$$

$$EQ(\mathbf{x}) = |\mathbf{E}(\widehat{\mathbf{Y}}(\mathbf{x})) - \mathbf{Y}(\mathbf{x})|^{r} + \mathbf{E} [|\widehat{\mathbf{Y}}(\mathbf{x}) - \mathbf{E}(\widehat{\mathbf{Y}}(\mathbf{x}))|^{r}]$$

$$Ecart = Biais^{2} + Variance$$

#### Remarques:

- pour kNN, Biais  $\approx 0$
- pour un modèle linéaire, le biais est nul s'il n'y a pas d'erreur de modèle.



### Malédiction de la dimension

- > kNN semble plus performant car plus flexible
- > Quand la dimension d du vecteur d augmente :

#### Exercice:

Soit  $(X_i)_{1 \le i \le n}$  des v.a.i.i.d. de loi uniforme sur  $[-1,1]^d$ 

Soit || . || la norme infinie, déterminer la loi de :

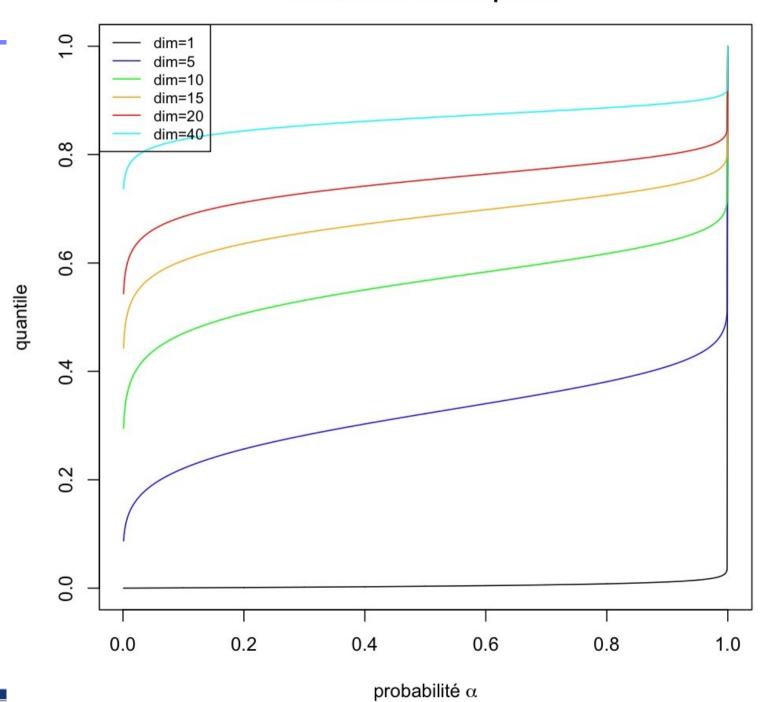
$$R = Min (||X_i||, 1 \le i \le n)$$

Soit q<sub>10</sub> le quantile à 10% de R, déterminer son comportement lorsque d augmente.

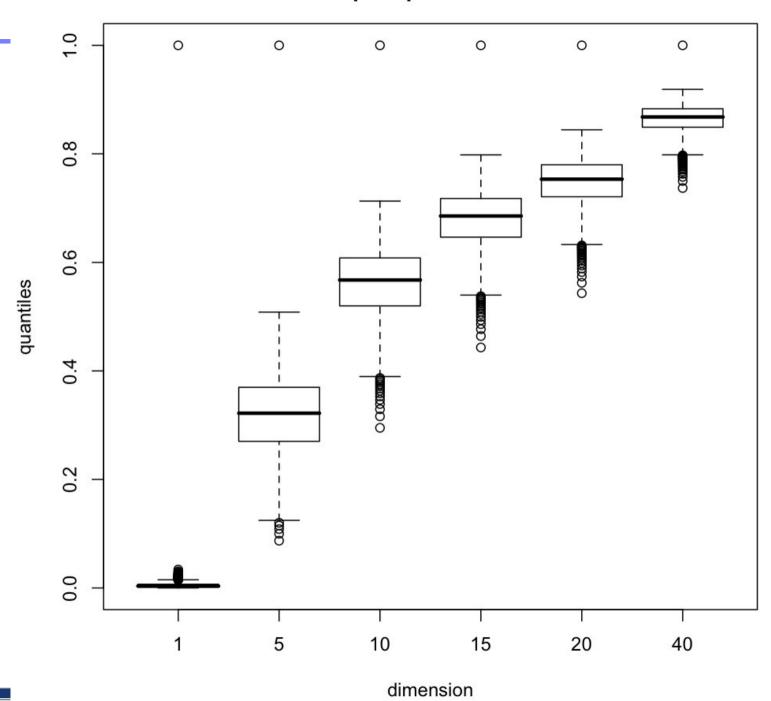
Conclusion?



# quantile du rayon du plus proche voisin en fonction de la dimension échantillon de 200 points



# boxplot de la loi du rayon du point le plus proche de 0



### Observations et conclusion

- Les points se concentrent dans une couronne proche du bord du cube!
- Le point le plus proche est à distance supérieure à 0.6 en dimension 15.
  - et il faut plusieurs points pour estimer correctement
- La moyenne locale opérée par kNN n'a plus aucun caractère local en grande dimension.



Méthode inapplicable en pratique



### Validation

- > Validation interne :
  - → Déjà aperçue avec l'exemple
    - On ajuste un modèle à partir des données :

$$\widehat{Y}(x)$$
 ou  $\widehat{G}(x)$ 

On examine les écarts entre valeurs observées :

écart entre 
$$\widehat{Y}(x_i)$$
 (ou  $\widehat{G}(x_i)$ ) et  $y_i$  (ou  $g_i$ )

- + En classification
  - ► % de bien classés pour chaque classe
- → En régression :

résidu = 
$$y_i - \widehat{Y}(x_i)$$

> Indicateur insuffisant



### Validation externe

- > Un modèle est fait pour prévoir
- > Validation de l'apprentissage :
  - → apprentissage sur des exemples (training set)
  - → validation sur d'autres exemples (validation set)
- > Plus généralement :
  - → ensemble d'apprentissage : estimation des modèles considérés (ex : kNN pour k variant).
  - ◆ ensemble de validation : évaluation de la qualité de prévision des modèles ajustés pour choisir le « meilleur »
  - ◆ ensemble de test : pour valider le modèle choisi.

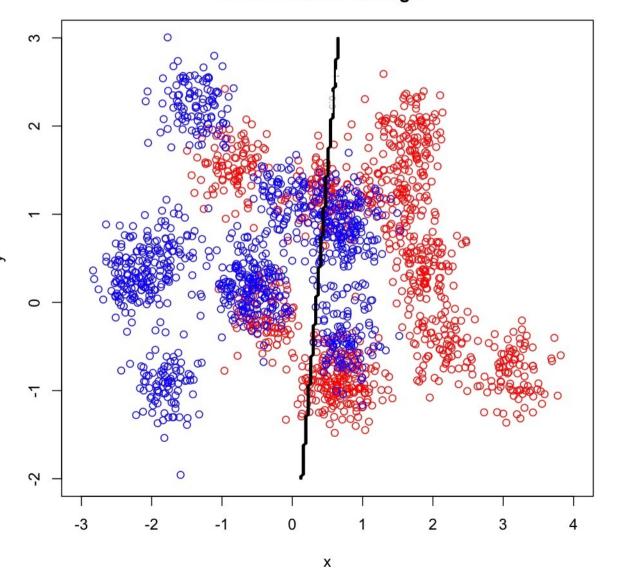


#### validation sur un échantillon test modèle linéaire de degré 1

72,8% de bien classés

#### rappel:

73,5% de bien classés en apprentissage

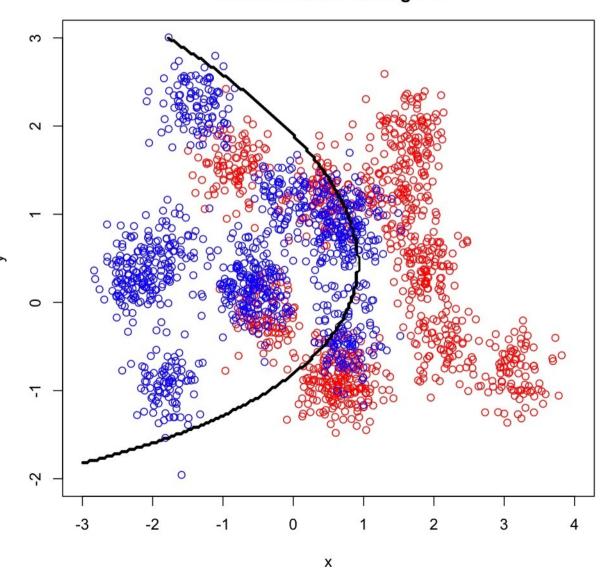


#### validation sur un échantillon test modèle linéaire de degré 2

77,5% de bien classés

#### rappel:

79,5% de bien classés en apprentissage

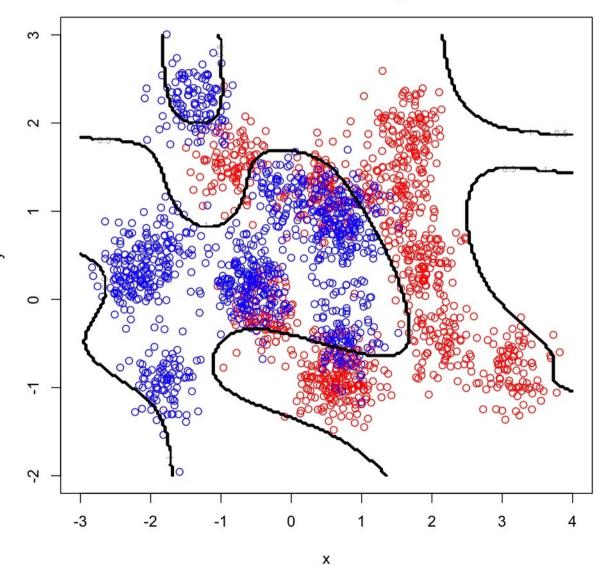


validation sur un échantillon test modèle linéaire de degré 5

84,5% de bien classés

rappel:

88% de bien classés en apprentissage



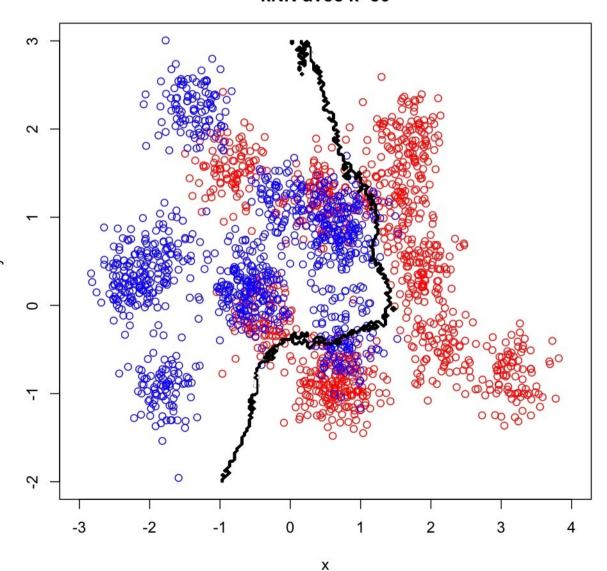
#### validation sur un échantillon test kNN avec k=30

80,2% de bien classés

rappel:

84% de bien classés

en apprentissage

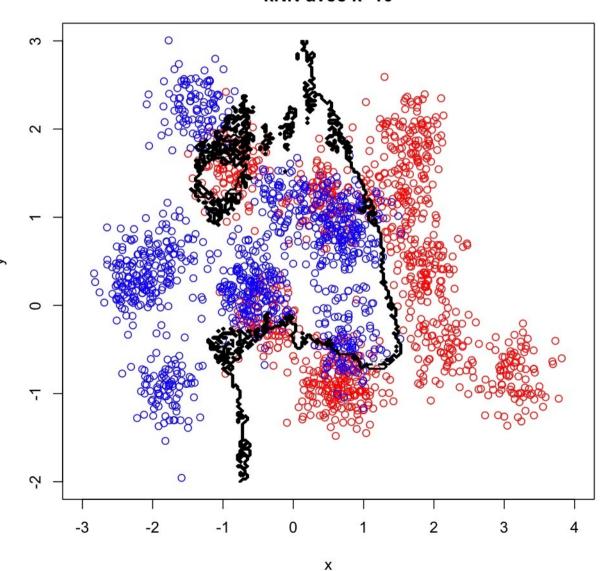


#### validation sur un échantillon test kNN avec k=10

84,9% de bien classés

rappel:

88% de bien classés en apprentissage

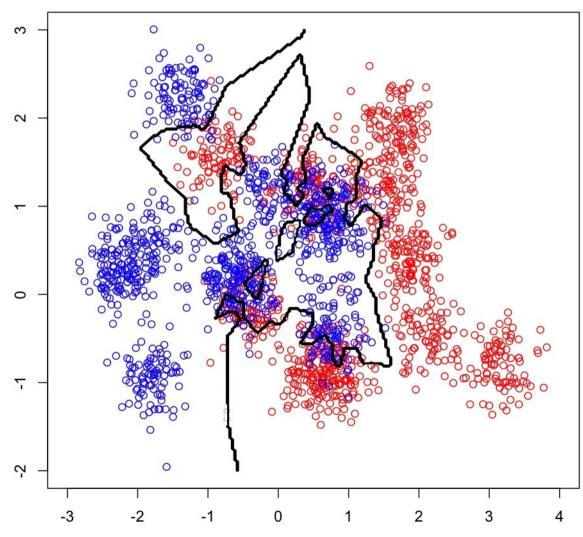


validation sur un échantillon test kNN avec k=1

82% de bien classés

rappel:

100% de bien classés en apprentissage



X

### Conclusions

- La différence entre écart en apprentissage et écart en validation augmente quand la complexité du modèle augmente.
- L'écart en validation n'augmente pas forcément quand la complexité augmente.
- Des modèles complexes prennent des décisions absurdes :
  - → modèle linéaire de degré 5 (points pour x petit ou x grand)
  - ♦ kNN pour k=1 (îlots au centre)



### La validation croisée

#### ➤ Idéal :

- → ensemble d'apprentissage (≈50%)
- ◆ ensemble de validation et de choix de modèle (≈25%)
- → ensemble de test (≈25%)

#### > Mais:

- + les données coûtent très cher
- ◆ l'idéal consiste mène à n'utiliser que la moitié des données pour construire le modèle !!



Idée de faire bouger les sous-ensembles...



### Cross-validation

- Découper les données en K parties de tailles approximativement égales : A<sub>1</sub>,...,A<sub>K</sub>
- $\triangleright$  Pour k=1 to K, faire:
  - ullet apprendre un modèle sur  $\bigcup A_i$ , noté  $\widehat{Y}^{-k}(x)$
  - → valider le modèle sur  $A_k^{j\neq k}$
  - évaluer le critère  $L_k = \frac{1}{n/K} \sum_{i \in A_k} L(y_i, \widehat{Y}^{-k}(x_i))$
- > Evaluer alors:

$$CV = \frac{1}{K} \sum_{k=1}^{K} L_k = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \widehat{Y}^{-k(i)}(x_i))$$

où k(i) désigne le numéro de la partie auquel appartient (x, y)



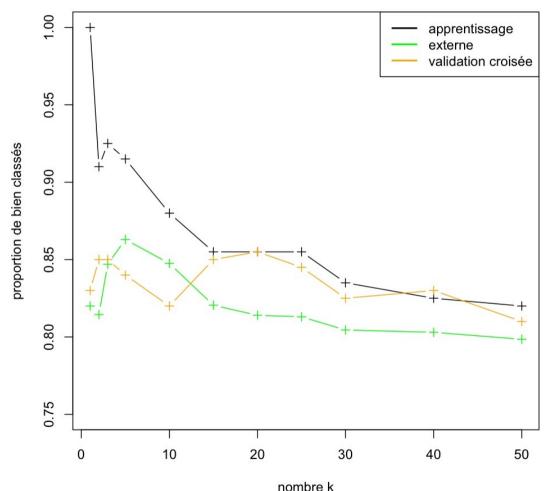
### Utilisation

- > Sous hypothèses à préciser, CV s'approche de EPL
- En pratique :
  - + K = 5 à 10
  - $\bullet$  ou K = n: leave-one-out
- > Choix de modèles basé sur CV :
  - + Exemple pour kNN, choix de k minimisant CV
  - ◆ En régression linéaire, on verra le lien avec les résidus studentisés.



# Retour sur l'exemple - kNN

#### différentes mesures d'erreur



| Hombre K           |      |      |      |      |      |      |      |      |      |      |      |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|
| k                  | 1    | 2    | 3    | 5    | 10   | 15   | 20   | 25   | 30   | 40   | 50   |
| apprentissage      | 1,00 | 0,91 | 0,93 | 0,92 | 0,88 | 0,86 | 0,86 | 0,86 | 0,85 | 0,84 | 0,82 |
| validation externe | 0,82 | 0,82 | 0,85 | 0,86 | 0,85 | 0,82 | 0,81 | 0,81 | 0,81 | 0,80 | 0,80 |
| validation croisée | 0,83 | 0,85 | 0,85 | 0,84 | 0,82 | 0,85 | 0,86 | 0,85 | 0,83 | 0,83 | 0,81 |

Supérieure des Mines

# Le bootstrap

- → Méthode générale en statistiques
- → Exemple élémentaire : intervalle de confiance
  - ► Soit  $(x_1,...,x_n)$  un n-échantillon de loi normale N(m,1)
  - ► Problème : intervalle de confiance pour m basé sur l'échantillon
  - ► Ici, calcul théorique :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 est de loi  $N(m, \frac{1}{n})$ 



$$\left[ \overline{X} - \frac{1.96}{\sqrt{n}}, \overline{X} + \frac{1.96}{\sqrt{n}} \right]$$
 est un intervalle de confiance

à 95% pour m



# Cas général

> Un intervalle de confiance de niveau doit vérifier :

$$P_{\theta_0}[\theta_0 \in [1(X_1,...,X_n), u(X_1,...,X_n)] = 1-\alpha$$

Pour l'exemple qui précède, on trouve un intervalle valable pour tout m= et non seulement pour le « bon »  $\theta_0$ 

### ➤ Bootstrap:

Remplacer  $P_{\theta_0}$  par une estimation notée  $P_n^*$ 

choix le plus courant 
$$P_n^* = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$
: loi empirique



# Algorithme

#### Pour b=1 à B, faire :

simuler un échantillon de taille n parmi  $\{x_1,...,x_n\}$ , noté  $X^{*b}$  stocker l'estimation de obtenue, notée \*b

Fin faire

Evaluer les quantiles d'ordre /2 et 1- /2 de l'échantillon des \*b, b=1,...,B

$$IC_{bootstrap} = [q_{\alpha/2}, q_{1-\alpha/2}]$$

Résultats: voir simulations R



# Le bagging

Bagging = Boostraping and Aggregating

#### > Idée :

- → rééchantillonner parmi les (x<sub>i</sub>, y<sub>i</sub>)
- + construire un modèle sur cet échantillon
- → moyenner les modèles obtenus



# Algorithme

 $\triangleright$  Soit Z = (X,Y) ou (X,G) l'ensemble d'apprentissage

Pour b=1 à B, faire :

simuler un échantillon de taille n parmi  $\{z_1,...,z_n\}$ , noté  $Z^{*b}$  estimer un modèle à partir de  $Z^{*b}$  stocker le modèle obtenu, noté  $\widehat{\mathbf{Y}}^{*b}$ 

Fin faire

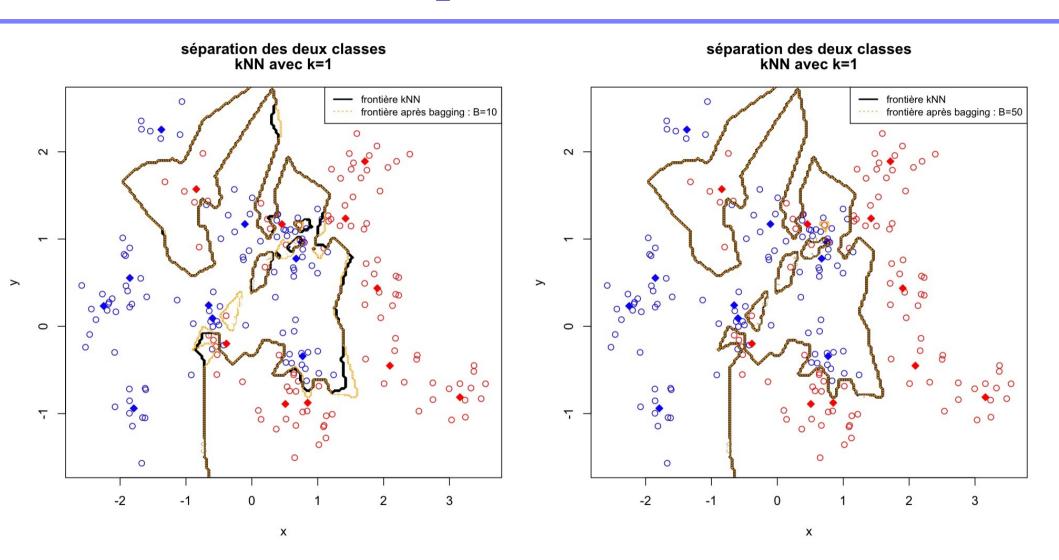
Poser:

$$\widehat{\mathbf{Y}}_{\text{bag}}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{\mathbf{Y}}^{*b}(\mathbf{x})$$

inutile pour un modèle linéaire en les réponses y



# Exemple avec kNN



Voir plus loin: CART, NN...

