
 1 

OPTIMAL DESIGNS FOR THE PROPAGATION OF UNCERTAINTY  
IN COMPUTER EXPERIMENTS 

 
 

Laurent CARRARO (1), Bernard CORRE (2),  
Céline HELBERT (1), Olivier ROUSTANT (1), Sylvain JOSSERAND (1) 

 
 (1) Département Méthodes et Modèles Mathématiques pour l’Industrie,  

École Nationale Supérieure des Mines de Saint-Etienne 
courriel : carraro@emse.fr 

 
(2) Direction Exploration Production,  

Division Techniques Géosciences 
Total 

courriel :bernard.corre@total.com 
 

ABSTRACT 
 Response surfaces, or meta-models, and design of experiments are widely used for various 
experimental works. But numerous physical phenomenons are studied through complex and 
costly numerical simulators. In such cases, the response is influenced by factors but the link 
between these variables is deterministic. Nevertheless, factors are often known with 
uncertainty and the influence of this ignorance is important for the practician. Due to the 
computing time, it is not possible to obtain the uncertainty of the response through a standard 
Monte Carlo method and an approximation of the simulator, a meta-model, is needed. We 
present an optimality criterion, the MC-V, in order to evaluate the probability distribution of 
the response with a minimal error. We chose to apply the criterion on parts of 2 real cases 
derived from the petroleum industry. The simulator 2nd order polynomial meta-model and the 
three distributions of input factors (uniform, gaussian, triangular) are among those used in this 
industry. Unlike the standard optimal D-criterion, the MC-V criterion considers the 
distribution of input factors. As a result, some points are placed near the center of the domain, 
where they are most likely to be observed. 
Finally, the MC-V criterion provides a realistic tool to assess the quality of the designs used to 
propagate uncertainty in computer experiments. 
 
 
Keywords: design of experiments, computer experiments, response surface, optimality 
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I. INTRODUCTION 
 
 Since R.A. Fisher pioneering work, the design of experiments is used to conceive and to 
plan experimental procedures, in order to provide maximum information by analysing results 
([1]). Such planning and analysis is problem dependent. Therefore ad hoc methods are often 
applied for different experimental objectives such as screening, optimization, robustness 
testing… These methods have benefited enormously from the development of computers, 
weakening numerous assumptions made in the first half of the 20th century. We cannot deal 
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with this whole technological revolution. We will focus on two specific techniques, the Monte 
Carlo method and the construction of optimal designs. 
 Before going down this road, let us recall that the exponential growth of computing power 
has had another great consequence: the emergence of very complex software, simulating 
phenomena from the modelling of chemical reactions, climate, to evaluation of oil and gas 
reserves. In theory, computer simulations should simplify. Paradoxically, the more powerful 
computer resources are, the closer one is able to mimic reality, and the more complex the 
simulations. Let us take the actual case of the evaluation of oil fields. If we could take into 
account all the input factors of an average field, they would represent about 106 inputs. 
Obviously reducing the complexity of the inputs is important. This can be accomplished by 
experts, and with the addition of further information (via seismography, for example), one can 
even obtain a probability distribution for the input factors. But simplifying the inputs is not 
enough. Indeed the simulator itself should be simplified. The CPU time is enormous, from 
one hour to several days. Evidently, the Monte Carlo method, which requires at least 10.000 
simulations, cannot be used to propagate the uncertainty of the input factors on the simulator 
itself. 

One of the basic ideas is to replace the simulator by a simple function, the meta-model, on 
which it is easy to apply the Monte Carlo method. But computer experiments have at least two 
major differences with respect to real-life experiments. First of all, in the real world, two 
experiments made under identical experimental conditions lead to different measurements. 
The existence of such differences, consequences of noise, (environmental noise, measurement 
noise, etc.) leads to the fundamental concept of variability. But in the virtual world, apart 
from numerical instabilities, two experiments under the same conditions lead to the same 
result. Therefore the concept of variability must be reinvented. This has been explored by 
numerous authors at the end of the 80's (see [2], [3] or [4] for a recent review). From a 
frequentist point of view, the basis of their work is to consider the simulator as the realization 
of a stochastic process. Using the data provided by computer experiments, the approximation 
of the simulator is a kriging surface, which is utilized often in geosciences. One of the 
numerous advantages of this approach is that the approximation of the simulator interpolates 
it at the experimental points. However in practical applications, the meta-models is often a 
linear regression model (for example, a 2nd order polynomial), which is easier to use 
especially for assessing uncertainty. 
 The second main difference between real and computer experiments is that for computer 
experiments, the unknown variables (as porosity, temperature, pressure, etc.) can be 
controlled since they are simply inputs of the computer code. Therefore, we can assess the 
impact of the input uncertainty on the output by propagating uncertainty through the code. 

In this paper, we show how to construct designs of experiments adapted to the propagation 
of uncertainty with a linear regression meta-model. These designs will be obtained from a 
new optimality criterion, the MC-V criterion. Indeed, tabulated or optimal designs (A, D, E, 
…) do not consider the probability distribution of input factors. In addition, a new class of 
designs such Latin hypercubes may be used to take into account the perfect repeatability of 
computer simulations. This will lead to MC-V optimal Latin hypercube designs. 
 

The article is divided as follows. In section II, we present the 2nd order polynomial meta-
model used for the simulator and its approximation. In section III, we build the MC-V 
criterion towards the objective of propagating uncertainty. Some properties are given in 
section IV, such as the equivalence between the IMSE criterion. Section V is devoted to 
examples of optimal designs. Computations of MC-V optimal designs and comparisons to 
other designs are made in 3 and 8-dimension. Finally, conclusions are given in section VI. 
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II. SIMULATOR META-MODELLING AND APPROXIMATION 

1. Simulator meta-modelling 

For practical applications, industrial simulators are often modelled statistically by linear 
regression: 
 

sim ( ) ( ) ( )Y x X x x! "= +  
 
with: 
 1( ,..., ) '

k
x x x= , the 1k !  vector of factors values 

 A trend (often called « response surface »), ( )X x ! , given as a linear combination of basis 
functions (for instance polynomials): 
 1( ) [ ( ),..., ( )]pX x f x f x= , the 1 p!  vector of basis functions values at x  

 ! , a 1p!  vector of unknown parameters, to be estimated 

 the error ( )x! , given as a random variable with normal distribution 2(0, )N ! . We suppose 
that in two points x  and y , the errors ( )x!  and ( )y!  are independent. The unknown 
variance term 2!  is to be estimated. 

 
We choose a second order polynomial for the basis functions.  

2. Simulator approximation 

For given experiments (1) ( ),..., n
x x , the simulator response is approximated in two steps:  

 
a) Least squares estimation of !  and ! . The estimators are: 

 1ˆ ( ' ) 'X X X Y! "
=  (Gauss-Markov estimator), with: 

 
(1) ( )[ ( ) ',..., ( ) '] 'n

X X x X x= ,  the experimental matrix n p!  

  (1) ( )

sim sim( ( ),..., ( )) 'n
Y Y x Y x= , the 1n!  vector of responses at experiments 

 2 ( ) 2

1

1 ˆˆ ( ( ) )
n

i

i

i

Y X x
n p

! "
=

= #
#
$  

 
b) Simulator approximation, by replacing !  and !  by their estimates in the simulator 

model: 
 

app
ˆ( ) ( ) ( )Y x X x x! "= +  

 
where ( )x!  is normally distributed 2(0, )N !  with 2 2

ˆ! "= , the errors ( )x!  and ( )y!  
being independent at two different points. 

 
Remarks 
 In linear regression 2!̂  is independent of !̂  (see [5]), so the ( )x!  are independent of !̂ . 

 Mathematically, it would be more correct to write the model for 
sim
Y  in another form, 

using stochastic processes, as done in [6]. This has no impact on the results. 
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III. THE MC-V CRITERION 

1. Motivation and definition 

Notation. For uncertainty considerations, the factors are viewed as random variables. To 
make it appear more clearly, we will denote x%  (x tilde) instead of x in this case to emphasize 
on the random nature of x. 
 
Motives. As stated before, our aim is to assess uncertainty on the simulator output. In 
mathematical terms, it means that we have to estimate the distribution of sim ( )Y x% . We will 
denote this distribution by 

sim
d . Since we do not know sim ( )Y x% , we can only estimate the 

distribution of the proxy app ( )Y x%  which can be constructed with experiments (1) ( ),..., n
x x . 

Denote 
app
d  the distribution of app ( )Y x% .   Therefore, one idea is to choose the experiments 

(1) ( ),..., n
x x  to minimize the “distance“ between the (unknown) theoretical distribution 

sim
d  

and the proxy distribution 
app
d . This “distance” will be our criterion. 

 
Constraint. Then, the MC-V criterion (see below for the sense of “MC-V”) could be defined 
as one of the distance criterion between probability distributions, as Kullback-Leibler, χ2, 
Hellinger…(see for example [7]). However such criteria are based on a measure of 
discrepancy between the distributions densities and may not be suitable for applications. 
Indeed in practise, the knowledge of the factors uncertainty is unsatisfactory. Hence, a 
criterion based on the probability density may be too sensitive to the poorly known 
distribution of the inputs. Rather, we may prefer criteria based on more basic elements of 
distributions, such as moments. 
 
Definition. Finally, for the aforementioned reasons, we have decided to base the MC-V 
criterion on the first two moments of the distribution of 

sim
d  and 

app
d . As the first moments 

are both equal to ( ( ) )E X x !% , we define the criterion by the difference of the second order 
moments of 

sim
d  and 

app
d , or equivalently, the difference of variances: 

 
(1) ( )

app sim( ,..., ) var( ( )) var( ( ))n
C x x Y x Y x= !% %  

 
Actually, this expression is positive, as we see in next paragraph and there is no need to use 
an absolute value. It represents the increase of variance due to the modelling of sim ( )Y x%  by 

app ( )Y x% . We propose to denote this criterion by MC-V, for Monte Carlo – Variance: the term 
“Monte Carlo“ reminds the user that this criterion is designed to estimate uncertainty of the 
output (which is currently done by the means of Monte Carlo simulations). 
 
Finally, MC-V optimal designs are those obtained by minimizing the MC-V criterion. 
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IV. EXPRESSIONS OF THE MC-V CRITERION. EQUIVALENCE TO IMSE. 
In this section, we assume that the experimental design (1) ( ),..., n

x x  is known. Mathematically, 
it means that all computations are made conditionally to (1) ( ),..., n

x x . We give two expressions 
of MC-V optimality: the first one makes a link with IMSE-optimality, the second is useful for 
the criterion implementation. 
 
Firstly, let us recall what IMSE optimality is. The IMSE criterion (see [4]) is defined as the 
mean of the squared forecast errors: 

2

sim
ˆ[( ( ) ( )) ] ( )

x

IMSE E Y x Y x d xµ
!"

= #$  

where ˆ( )Y x  denotes the forecast at point x , µ  is the probability distribution of vector x  and 
!  is the experimental domain. In our regression framework, we have ˆˆ( ) ( )Y x X x != . 
When working with IMSE, the justification of the choice for measure µ  is not clear. Uniform 
measure is widely used, arguing that there is no available information. In an uncertainty 
framework, one may prefer the a priori distribution given by experts (in oil Exploration / 
Production, µ  may be the sub-surface distribution). However, there is no evidence as to why 
such a choice may lead to an accurate approximation of the output distribution. In the 
following proposition, we show that this is actually the case and obtain three expressions for 
the criterion. 
 
Proposition 
Let (1) ( )[ ( ) ',..., ( ) '] 'n

X X x X x=  be the experiment matrix for experiments (1) ( ),..., n
x x . We 

have: 
i. (1) ( ) 2 2 1( ,..., ) { ( )( ' ) ( ) ' }n

IMSE x x E X x X X X x! ! "# $= + % &% %  

ii. (1) ( ) 2 1( ,..., ) { ( )( ' ) ( ) ' }n
C x x E X x X X X x! "# $= % &% %  

iii. (1) ( ) 2 1 1

( ) ( ) ( )( ,..., ) { ( ' ) ' Tr(( ' ) )}n

X x X x X x
C x x m X X m X X! " "

= + #
% % %

, where ( )X x
m

%
 and ( )X x

!
%

 
denote respectively the expectation and covariance matrix of random vector ( )X x% . 

 
Remarks 
− The first two expressions show the equivalence of IMSE and MC-V optimality, with 

(1) ( ) 2 (1) ( )( ,..., ) ( ,..., )n n
IMSE x x C x x!= + . This equivalence justifies a posteriori the use of 
the ISME criterion for uncertainty purposes. Indeed, the IMSE is related to uncertainty 
issues and is not solely a “mean-squared-errors” expression. Note that IMSE optimality is 
related to L-optimality and A-optimality (see [4], §6.2.2.). As a consequence, MC-V 
optimality is related to these criteria as well. 

− The second expression shows that the MC-V criterion is positive (since the matrix 'X X  
is positive definite). 

− The third expression is useful for practical implementation. 
 
Proof 
− Formula (i) can be found in [4], page 171 (the equivalence of notations is the following: J 

lies for IMSE/σ2, f(x) for X(x), F for X, and dµ(x)=w(x)1χ(x)dx). 
 
− Let us prove the second one. By the conditional variance formula, we have: 

sim sim simar( ( )) [var( ( ) | )] var[ ( ( ) | )]v Y x E Y x x E Y x x= +% % % % %  
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app app appar( ( )) [var( ( ) | )] var[ ( ( ) | )]v Y x E Y x x E Y x x= +% % % % %  
Now, the two first conditional moments are equal: 

sim app( ( ) | ) ( ) ( ( ) | )E Y x x X x E Y x x!= =% % % % %  

The first equality is obvious, and the second one is due to the fact that !̂  is an unbiased 
estimator. Therefore we obtain: 

(1) ( )

app sim( ,..., ) [var( ( ) | )] [var( ( ) | )]n
C x x E Y x x E Y x x= !% % % %  

Since 2

simvar( ( ) | )Y x x !=% % , we then have the following expression: 
(1) ( ) 2

app( ,..., ) [var( ( ) | )]n
C x x E Y x x != "% %  

 
Let us now compute appvar( ( ) | )Y x x% % . We have: 

app app
ˆ( ) ( ( ) | ) ( ) ( ) ( )
ˆ                                  ( )( ) ( )

Y x E Y x x X x x X x

X x x

! " !

! ! "

# = + #

= # +

% % % % % %

% %
 

Conditionally to x% , the two terms ( )x! %  and !̂  are independent (see 1st remark, § II.2), so we 
can write: 

app
ˆvar( ( ) | ) var( ( )( ) | ) var( ( ) | )Y x x X x x x x! ! "= # +% % % % % %  

Therefore, if we denote ˆvar( | )x! %  the covariance matrix of !̂  (conditionally to x% ), we 
obtain: 

2

app
ˆ ˆvar( ( ) | ) ( ) var( | ) ( ) 'Y x x X x x X x! "= +% % % % %  

 
To achieve the proof of (ii), we have to compute the expectation of the preceding expression. 
By Gauss-Markov theorem, we have: 2 1ˆvar( | ) ( ' )x X X! " #

=% , and 2 2ˆ( | )E x! !=%  ( 2!̂  is an 
unbiased estimator). Finally we obtain: 

2 1 2

app[var( ( ) | )] ( )( ' ) ( ) 'E Y x x E X x X X X x! !"# $= +% &% % % %  
which leads to the second expression: 

(1) ( ) 2 1( ,..., ) ( )( ' ) ( ) 'n
C x x E X x X X X x! "# $= % &% %  

 
The third expression (iii) in the proposition is a consequence of the second. To see this, one 
has to remark that if Q is a symmetric matrix and u a centred random vector,  

[ ] , , ,

, ,

' cov( ) Tr( cov( ))k l i j k l k l

k l k l

E uQu q E u u q u Q u! "= = =# $% %  

Using this formula with 1( ' )Q X X
!

=  and  ( )( )
X x

u X x m= ! , we obtain: 
(1) ( ) 2 1 1

( ) ( ) ( ) ( )( ,..., ) { ( ' ) ' ( ( ) )( ' ) ( ( ) ) ' 2 0}n

X x X x X x X x
C x x E m X X m E X x m X X X x m! " "# $ # $= + " " + %& ' & '% % % %

% %

and finally: 
(1) ( ) 2 1 1

( ) ( ) ( )( ,..., ) { ( ' ) ' Tr(( ' ) )}n

X x X x X x
C x x m X X m X X! " "

= + #
% % %  

 

V. CALCULATION ALGORITHMS AND EXAMPLES. 
 
The aim of this section is to present some examples of MC-V optimal designs. We compare 
them with standard A-optimal, D-optimal and FCC designs, which do not take into account 
the factors distribution. We also present the results that can be obtained by restricting to a 
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useful class of designs, named Latin hypercubes. In all this section, we assume that the 
experimental domain is the cube [-1,1]d. 
 

1. Some standard designs. Latin hypercubes. 

A-optimal, D-optimal designs. The A-criterion and D-criterion are defined to minimize the 
estimation error in the statistical meta-modelling. In the present linear regression framework, 
the parameters estimator !̂  follows the normal distribution 2 1(0, ( ' ) )N X X! " . Then the 
confidence region around β is an ellipsoid. Minimizing the estimation error can be achieved 
by minimizing the surfaces of the ellipsoid, which gives the D-optimal designs, or its 
perimeter, which gives the A-optimal designs ([8]). Formally, the two criteria are as follows: 

( )
( )

(1) ( ) 1

(1) ( ) 1

( ,..., ) Tr ( ' )

( ,..., ) det ( ' )

n

n

A x x X X

D x x X X

!

!

=

=
 

Remark. Another equivalent definition for the D-criterion is ( )(1) ( )( ,..., ) det 'n
D x x X X= . We 

have chosen the definition above so that optimal designs are obtained by minimization of the 
corresponding criterion. 
 
Face-Centered Cubic (FCC) design. Among the large list of tabulated designs, the FCC is 
widely used in industrial applications. This design is a special case of central composite 
design (CC, see [8]), and is also denoted by CCF for central composite face-centered. It 
consists of all vertices + the center of all faces + the center of the domain. Its size is 
2 2 1
d

d+ + . In our 8-dimensional case, we will use a fractional FCC design: it consists of all 
vertices of a (resolution V) fractional 28-2 design + the center of all faces + the center of the 
domain. Its size is 8 2

2 2 8 1 81.
!
+ " + =  

 
Latin hypercubes. Some very useful designs for physical experiments purposes can be of 
little interest for virtual computer experiments. For instance, suppose that there are 3 
variables, but that only 2 of them are really influential, say the two first ones. Then the two 
vertices (-1,-1,-1) and (-1,-1,1) will give exactly the same response since the simulator gives 
deterministic results, rendering further simulations counterproductive. Introduced by [9] (see 
also [4]) for sampling, the Latin hypercube designs prevent useless repetitions, by compelling 
all one-dimensional projections of the d-dimensional design to be different. Here, we will 
define Latin hypercubes in discrete space. Then, a Latin hypercube is a matrix n×d. The first 
column is a discretization of [-1,1] in n parts. Each other column is a permutation of the first 
one. So we can write: 

1 1( , ( ),..., ( ))
d

LHd x x x! ! "=  
where x  is the n×1 vector ( 1, 1 2 /( -1),..., 1 2( - 2) /( -1), 1) 'x n n n= ! ! + ! + !  and 1 1,...,

d
! ! "  are 

permutations on x. Consequently, all one-dimensional projections are different. In addition, 
note that all projections are equally spaced. This is particularly interesting when all input 
variables follow a uniform distribution. In other cases, the definition can be adapted according 
to the input distributions of factors. For instance, if all factors follow a triangular distribution, 
it is more logical to use for x the percentiles of the triangular distribution. 
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2. Presentation of the algorithms used to get optimal experimental designs 

In the last section, we have recalled the definitions of A-optimality and D-optimality criteria, 
which are the ones often used for experimental design methodology. We have also recalled 
that Latin hypercube designs (LHd) are commonly used and could be suitable for computer 
experiments. In part II, we have built a criterion especially adapted to the problem of 
uncertainty propagation, the Monte Carlo-Variance optimality criteria (MC-V criteria). The 
criterion clearly depends on the distributions of input factors. In this third part, these factors 
will vary from -1 to 1 and have the same distribution. 
 
Now, we compare the MC-V optimal designs with A-optimal, D-optimal, FCC designs, 
restricting or not to the class of Latin hypercubes. Recall that only MC-V optimality takes into 
account the factors distribution. Here, for the MCV-optimal designs, we will consider three 
particular cases:  
- uniform distribution;  
- normal distribution (conditional, knowing that the parameters are between -1 and 1); 
- “triangular” distribution.  
 
We have implemented two optimisation algorithms which can search for A, D or MC-V 
optimal designs. 
 
- The first algorithm works on unrestricted experimental designs. Depending on 

optimisation progress, Newton or conjugate gradient method is applied. We do not define 
any discrete grid, therefore design points can be positioned in any place in the 
experimental domain. However, when there are few variables (especially for 3-
dimension), we have often observed that several points could be placed at the same 
position in the domain. These redundant experiments are useless because computer 
experiments are deterministic. That is why we have chosen to impose a minimal distance 
between two points in the same design. This distance can be chosen by users.  

 
- The second algorithm works on the restricted class of Latin hypercube (LH) designs. 

Here, an exchange algorithm is adapted from Park’s algorithm ([10]). Often, experiments 
are placed on a uniform grid. But, in normal and triangular cases, users can choose 
between two different discretizations: uniform or adapted (according to the distribution of 
input factors, see V.1).  

 
In what follows, we will first visualize different types of designs in 3-dimension. Then, we 
will study 8 dimensional experimental designs and discuss the values of A, D and MC-V 
criteria. 

3. Optimal experimental designs in 3-dimension 

In 3-dimension visualization is possible, allowing us to intuitively understand different 
characteristics of criteria and types of design. The Face-centered cubic (FCC) will be our 
reference point and will be always set in the top left-hand corner on the next 5 illustrations. 
All the experimental designs represented here are comprised of 15 experiments.  
 
Now, let us look at experimental designs optimized for D, A and MC-V criteria (for uniform 
distribution) on figure 1. Notice that all the experiments of D optimal design are at the 
boundaries of the experimental domain. On the contrary, although A-optimal and MC-V 
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optimal designs have a majority of points at the boundaries, one or more points are placed at 
the centre of the domain. Indeed, we have 1 point in this position in A-optimal case and 3 
points in MC-V optimal case.  
 
Recall that the MC-V criterion is introduced to propagate the uncertainty of input factors. 
Therefore, MC-V optimal designs depend on these distributions. That can be verified on 
figure 2. In normal and triangular cases, the high density of these distributions at the centre of 
the domain results in a higher number of points at this place: 3 points for uniform distribution, 
5 points for normal or triangular. However, a majority of points is again observed at the limits 
of the domain. This ensures the quality of the estimation of the meta-model used to propagate 
uncertainty. The others points are inside the domain, where they are most likely to be 
observed according to the distribution of the input factors. 
 

Please insert figures 1 and 2 here 
 
Figure 3 represents Latin hypercube designs optimized for D, A and MC-V (for uniform 
distribution) criteria. With LH constraint, experiments seem to be scattered better in the 
domain. However, differentiating among the D, A and MC-V optimality criteria becomes very 
difficult. On figure 4, we represent the LH MC-V optimal designs for the three distributions 
of input factors. Similar conclusions apply, but with an even better dispersal. Differentiating 
among the three cases is difficult too. Maybe, we can say that there are slightly more points at 
the centre for triangular distribution.  
 

Please insert figures 3 and 4 here 
 
Figure 5 is similar to figure 4, but the discretization is adapted to the distributions of input 
factors. The influence of normal or triangular distribution is particularly visible, with many 
points near the center of the domain. 
 

Please insert figure 5 here 
 

4. Optimal experimental designs in 8-dimension 

As visualizing designs in 8-dimension is problematic, we have produced comparative tables in 
order to appraise the relative quality of each design. There are three tables, one for each 
distribution of the input factors (uniform, normal, triangular), giving criteria values and 
computation time. Depending on the distribution choice, only MC-V criterion and MC-V 
optimal designs (LHd or not) change from one table to another. Let us state that adapted and 
uniform discretizations are the same for uniform distribution. Finally, let us recall that optimal 
designs are obtained by minimization of the corresponding criterion (see in particular the 
definition of  D-optimality [§ V.1]). 
 
Let us look at table 1, concerning uniform distribution. Firstly, it appears clearly that 
calculation times are quicker for LHd than for other designs. However, optimisation is 
restricted to LHd class and the values of criteria are not as appropriate than for ordinary 
designs. Notice that the tabulated FCC design gives excellent results, but is comprised of 
more experiments (81 instead of 50). 
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Secondly, calculating D optimal designs (LHd or not) takes much more time than the others. 
Generally, computation times are much too high for this dimension. Petroleum companies 
need to have designs for a minimum of 8 dimensions and to use them in real cases. In 
addition, optimising MC-V criterion under LHd constraint seems to be not completely reliable 
every time. Indeed, for example, the best design for the MC-V criterion, the MC-V optimal, is 
surpassed by the D optimal LHd !  
 
Apparently, the A-optimal design is nearly optimal for the MC-V criterion. We had already 
observed this in 3-dimension, where A and MC-V optimal design have both at least one point 
in the centre of the domain. On the contrary, the lack of experiments in the centre of the 
domain seems to penalize D-optimal design for A and MC-V criteria (and even more for 
normal and triangular distributions!).  
 

Please insert table 1 here 
 
Lastly, in normal and triangular cases (tables 2 and 3), the LHd with adapted discretizations 
seem to be less efficient as to criteria values.  
 

Please insert tables 2 and 3 here 
 

5. Industrial applications and perspectives  

Computational time is too high at present for industrial use. One idea would be to try other 
optimization methods such as genetic or evolutionary strategies (ES) algorithms. However, 
this may not be enough. Another approach could simply be to select some known standard 
designs (FCC, Box-Benhken…) by calculating their corresponding MC-V criterion value, 
which is easy to do.  
 
The crucial issues for petroleum companies are inverse modelling problems, and especially 
history matching. To estimate future production of a hydrocarbon reservoir, engineers have 
simulators at their disposal. Sometimes, they also have information of past production, which 
constitutes history data. With an appropriate choice of input parameters, the simulators must 
approximately give as an answer the real data already measured on the field. The 
methodology of experimental designs is commonly used to find these appropriate sets of input 
factors. According to our observations, it seems that both (non LH) MC-V optimal designs as 
well as LH A and D-optimal designs may be promising in history matching applications.  
 

VI. CONCLUSION 
We have introduced a new criterion, the MC-V, to construct optimal designs for the 
propagation of uncertainty through a simulator. We have obtained several expressions of the 
criterion and shown its equivalence with IMSE. We have studied two cases, in 3 and 8 
dimensions. The visualization of the 3-dimensional MC-V optimal designs show that most of 
the points are placed on the boundaries of the experimental domain. This ensures a good 
estimation of the meta-model used to propagate uncertainty. In addition, the others points are 
near the center of the domain, where they are most likely to be observed according to the 
distribution of the input factors. For the 8-dimensional case, the MC-V optimal designs are 
difficult to obtain, because of optimizational issues. However, the MC-V criterion is useful 
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for comparison. For example, in our instance it shows that the A-optimal is preferred to the D-
optimal. 
In a broader sense, the MC-V criterion provides a useful tool to assess the quality of the 
designs used to propagate uncertainty in computer experiments. 
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Figures 
 

Figure 1:  

FCC, D-optimal, A-optimal, and MC-V optimal (for uniform distributions) designs with 
15 points in dimension 3  

 
On this figure, empty points are at the limits of the experimental domain. Full points are 
inside and have their projections drawn with a discontinued line. The abbreviation “dist.” 
means “distribution”.  
 
 

Figure 2:  

FCC, MC-V optimal for uniform, normal and triangular distributions with 15 points in 
dimension 3  

 
On this drawing, empty points are at the limits of the experimental domain. Full points are 
inside and have their projections drawn with a discontinued line. The abbreviation “dist.” 
means “distribution”.  
 

FCC 

I. D OPTIMAL 

A optimal MC-V optimal, uniform dist. 

FCC MC-V optimal, uniform dist. 

MC-V optimal, normal dist. MC-V optimal, triangular dist. 

D optimal 
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Figure 3:  

FCC, LH D-optimal, LH A-optimal, LH MC-V optimal (uniform distributions) designs 
with 15 points in dimension 3  

 
On this drawing, empty points are at the limits of the experimental domain. Full points are 
inside and have their projections drawn with a discontinued line. The abbreviation “dist.” 
means “distribution”; “LH” means “Latin Hypercube”.  
 
 

Figure 4:  

FCC, LH MC-V optimal for uniform, normal and triangular distributions with 15 
points in dimension 3  

 
On this drawing, empty points are at the limits of the experimental domain. Full points are 
inside and have their projections drawn with a discontinued line. The abbreviation “dist.” 
means “distribution”; “LH” means “Latin Hypercube”.  
 

FCC LH D optimal 

LH A optimal LH MC-V optimal, uniform dist. 

FCC LH MC-V optimal, uniform dist. 
 

LH MC-V optimal, normal dist. 
 

LH MC-V optimal, triangular dist. 
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Figure 5:  

Same a figure 4, when the discretization is adapted to the distributions of input factors  
 

 
On this drawing, empty points are at the limits of the experimental domain. Full points are 
inside and have their projections drawn with a discontinued line. The abbreviation “dist.” 
means “distribution”; “LH” means “Latin Hypercube”, and “AD” means “Adapted 
Discretization”.  
 

FCC LH AD MC-V optimal, uniform dist. 

LH AD MC-V optimal, normal dist. LH AD MC-V optimal, triangular dist. 
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Tables 
 
 
Table 1:  
 
Computation time and criteria values for different computed designs and FCC design, 
when input factors have uniform distributions 
 

Uniform distribution Calculation time  
(en sec) 

MC-V 
criterion D criterion A criterion 

MC-V optimal design 4333 0.455 2.54E-58 3.302 

D optimal design 24968 0.989 1.67E-62 5.192 

A optimal design 4431 0.477 6.74E-60 3.204 

MC-V optimal LHd (uniform 
discretization) 117 1.501 6.42E-34 13.110 

MC-V optimal LHd (adapted 
discretization) 405 1.441 2.53E-34 12.510 

D optimal LHd 9248 1.250 1.09E-35 10.825 

A optimal LHd 2643 1.676 3.47E-33 14.240 

Face-centered cubic  
(81 points) / 0.436 8.55E-72 4.146 

 
 
Table 2:  
 
Computation time and criteria values for different computed designs and FCC design, 
when input factors have normal distributions 
 

Normal distribution 
Calculation time  

(en sec) 
MC-V 

criterion D criterion A criterion 

MC-V optimal design 5132 0.300 6.62E-56 3.786 

D optimal design 24968 1.095 1.67E-62 5.192 

A optimal design 4431 0.378 6.74E-60 3.204 

MC-V optimal LHd (uniform 
discretization) 155 0.761 1.37E-33 13.422 

MC-V optimal LHd (adapted 
discretization) 646 1.419 2.62E-18 29.980 

D optimal LHd 9248 0.644 1.09E-35 10.825 
A optimal LHd 2643 0.831 3.47E-33 14.240 

Face-centered cubic  
(81 points) / 0.274 8.55E-72 4.146 
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Table 3:  
 
Computation time and criteria values for different computed designs and FCC design, 
when input factors have triangular distributions 
 

Triangular distribution Calculation time  
(en sec) 

MC-V 
criterion D criterion A criterion 

MC-V optimal design 4388 0.261 1.73E-54 4.136 

D optimal design 24968 1.121 1.67E-62 5.192 

A optimal design 4431 0.359 6.74E-60 3.204 

MC-V optimal LHd (uniform 
discretization) 106 0.618 1.09E-33 14.098 

MC-V optimal LHd (adapted 
discretization) 249 1.414 3.54E-13 41.630 

D optimal LHd 9248 0.549 1.09E-35 10.825 
A optimal LHd 2643 0.692 3.47E-33 14.240 

Face-centered cubic  
(81 points) / 0.221 8.54E-72 4.146 
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